

SOFTENG 306

Project 1

Version 3.3

Dr. Seyed Reza Shahamiri
Department of Electrical, Computer, and Software Engineering

Faculty of Engineering

The University of Auckland

1

Table of Contents

1 Assessment Conditions ..2

2 Project Management Tool ..2

3 GitHub Classroom ..2

4 The App Specifications ..2

4.1 Activity 1: MainActivity .. 2

4.2 Activity 2: ListActivity ... 3

4.3 Activity 3: DetailsActivity .. 4

4.4 Search Functionalities (or SearchActivity): .. 4

4.5 Database .. 5

4.6 App Design and Wireframe .. 5

5 Your Tasks ..5

6 GitHub Usage Policy ...6

7 Deliverables ..6

7.1 Design Doc (15 Individual Score) .. 7

7.2 Project Demo (15 Score – individual and team components) ... 9

7.3 Project Code and Quality Report (20 Score) ... 10

8 Testing ... 11

9 Project Code Submission ... 11

10 Resources.. 11

11 Project Schedule ... 12

12 Links .. 12

13 Feedback... 12

14 FAQs .. 12

2

You work as an Android developer at YouSee Soft, a company specialized in engineering

mobile applications. This year, the company is running a competition in which all of its software

engineers, in teams of three, are asked to participate in developing a native android app that can

be used to showcase/sell some products and items. You can get inspired by similar apps like Trade

Me and AliExpress. To be eligible to participate in this competition, you need to follow the

instructions given in this document and ensure your app meets the specifications given here. Your

ability to apply best software design principles, clean code, and GUI design will mainly be assessed

in this competition.

Dr. Reza Shahamiri and his team will be your coach in this competition. They will assess and

monitor your progress, identify your final score and, ultimately, the winner(s) of this competition

based on the criteria provided in this document. At the end of this competition, you will demo

your application over Week 6, submit the source code and other deliverables via Canvas for

detailed analysis, and will receive a score out of 50.

1 ASSESSMENT CONDITIONS

• To be done in teams of 3 students with both team and individual score components.

• Open book

• No time limits (please refer to the due dates for each deliverable)

2 PROJECT MANAGEMENT TOOL

It is recommended that you use electronic project management tools, such as Trello, for task

allocation, tracking, etc. Please ensure that you provide access to the coaching team.

3 GITHUB CLASSROOM

All developers need to use GitHub Classroom to work on the project collaboratively. One of

the developers to follow GitHub Classroom Assessment Link to setup the team and repo. Your

team name must be the same as the name used on Canvas. Once you create your team, kindly

inform your other team members to follow the link and join your Classroom team. Please do not

follow the GitHub Classroom invitation link before your partner invites you to do so, and then

ensure that you join the correct team.

You must use the Git account associated to your UoA UID. Please do not use your personal

GitHub account.

Admin access to your repository is enabled for all team members. It is the team’s responsibility to

maintain the repo, keep it private, and not provide access to anyone outside the team.

4 THE APP SPECIFICATIONS

Your app should consist of at least three activities explained below and meet the required

specifications.

4.1 Activity 1: MainActivity

This activity enables users to select a category of the items to be shown. For example, if your

https://trello.com/
https://classroom.github.com/a/Yh8TWrT2

3

app sells cars, MainActivity provides different categories of cars for the user to browse such as

Sedan, SUV, Hatchback, MPV, etc. You need to provide at least three categories.

This activity also enables users to search for specific items using the name of the item, and

provides a panel for specific items such as bestselling, most viewed, etc. This panel is expected to

populate via a RecyclerView – using fixed-coded views in this panel imposes a 40% penalty. You

need to implement a logic in which the items in this panel get updated as the results of the user

interacting with the app. A mock-up design of this activity is provided below.

The model classes need to follow a proper inheritance structure and enable dependency injection

via interfaces, and ensuring SOLID principles are not violated, as discussed during the lectures.

Your abilities to maximize software maintainability will be holistically assessed in this project.

4.2 Activity 2: ListActivity

Upon selecting one of the categories in MainActivity, the app shows ListActivity in which a

list of the items, in respect to the selected category will be provided. In this activity, you need to

properly use a ListView or RecyclerView to dynamically present the information from the

database (explained later) that stores all of the items. The user should be able to scroll through

this list and select one of the items. You need to provide at least ten items per each category. Each

item is presented as an object of its model class.

For model classes, you need to use a different class for each category, and properly use

dependency injection and inheritance hierarchy with one custom adaptor to populate all this

activity. It is expected to see slightly different layout design for each category to showcase this

requirement. This is further explained in lesson “14 - Android - Working with Database”.

It is also expected that one custom adaptor for these activities is used and designed in a way to

accommodate different item layouts – this is to promote maintainability. Please provide sufficient

justification if you decide to implement more than one adaptor for these activities and explain

why a single adaptor could not be used. Otherwise, a penalty of up to 30% may apply to your

project.

A mock-up design of ListActivity is provided below:

4

4.3 Activity 3: DetailsActivity

Once users select one of the items of ListActivity (or SearchActivity explained below), the app

should bring up DetailsActivity that provides all detailed information about the selected item.

This activity enables the user to navigate through multiple images of the item (at least 3 images)

using an image slider, ViewPager, etc. If only one image for each item is presented, a 20%

penalty will apply.

Ensure proper information of each item is provided, and the GUI properly categorize related

information. You can add extra information as well, such as related items, etc.

A simple design mock-up of this activity is provided below:

4.4 Search Functionalities (or SearchActivity)

Searching functionalities are invoked by a search request from MainActivity and shows the

results of the search term. If no item is found, a proper message should be shown. To design this

page, you can either implement ListActivity in a scalable manner so that it can also show the

search results, or alternatively design a separate activity called SearchActivity. You need to ensure

all possible exceptions are properly handled.

The search operation should follow a similar procedure to other well-known apps in the Android

https://developer.android.com/training/animation/screen-slide

5

platform. Do not impose unnecessary learning curve for your users.

A design mock-up for this activity is shown below:

4.5 Database

You are required to store your app data in Firestore collections. Your app should properly

interact with the database to capture and manipulate data as needed.

4.6 App Design and Wireframe

All given design wireframes are only simple samples and you are expected to adopt different

design ideas that best match the scope and users of your app as long as the specifications are met.

You also need to properly follow Material Design.

A possible Wireframe of this app is provided. You can also refer to the previous implementations

of a similar project to get inspired:

Sample 1

Sample 2

Sample 3

5 YOUR TASKS

To be eligible for this competition you are required to:

1. Select the context of your app. For example, your app can list cars, books, houses, cell

phones, etc.,

2. Complete and submit the design document as explained in the deliverable section,

3. Implement the Firestore database for your app,

4. Implement the app that provides the user experience (UX) explained above with your

chosen design,

5. Use Android Studio and Java only,

6. Present your model classes via a proper inheritance association,

7. Try to use only one adaptor for ListActivity (or ListActivities),

https://material.io/develop/android
https://xd.adobe.com/view/972b0ab8-d288-4de1-6b66-fa4006ee51a3-e11a/?fullscreen
https://youtu.be/VRXd34YHEXM
https://uoa-my.sharepoint.com/:v:/g/personal/ssha631_uoa_auckland_ac_nz/EakYbaCCSXROt-Tsq9t2HJQBwa5lwqX4MsSyXhLQ4xYrFg?e=5Lp4H1
https://youtu.be/a_OxFXqDIiQ

6

8. Improve the UX of your app by adding smooth animations and transitions,

9. Research well-known apps in the context of your project to understand the type of

animations/transitions expected. Your ability to self-train is being evaluated here,

10. Ensure your app is responsive-resize and has appealing graphical user interface,

11. Ensure good coding and software design practices and principles are followed,

12. Ensure your app does not violate SOLID principles,

13. Ensure your app follows Material Design Guidelines,

14. Use GitHub Classroom from the beginning of the project for versioning and frequently

commit changes with proper description so we can measure and evaluate each developer’s

participation (explained below). You must show commits and code addition from the

beginning of the competition (i.e., the beginning of Part I) all the way to the submission

day,

15. All pull requests must be reviewed by the other team member,

16. All engineers to demo the project,

17. One of the dev engineers to compress the entire project as a Zip file including all project

files and submit the zip file on Canvas.

6 GITHUB USAGE POLICY

You are required to properly set GitHub Classroom and commit changes as you go through

the project. We refer to each engineer’s commit and code participation history as part of assessing

individual scores, meeting deadlines, team commitment, etc. Please be advise that your GitHub

performance is not the only indication of your commitment and participation, and we rely on

other factors to identify your score. Kindly pay attention to the followings:

• Do not commit all your changes at the end of the project or you may receive no score

(i.e., a zero mark!) if you cannot provide us evidence of your ongoing commitment to the

competition and team.

• Do not push fake commits or add and then delete bulk code to increase your commit and

code participation metrics. This may result in a zero score and may affect your partners’

scores too.

• Use your git account associated with your UID.

• Lack of continuous and meaningful commit history from the beginning of the project,

any attempt to manipulate your participation, or using your personal git account results

in, at least, 30% deduction of your overall score if you fail to supply a proper justification.

Please note the team repo is not an indication of submission and all deliverables must be

submitted via Canvas as well, since GitHub is an external system to our organisation. Your repo

must be private and only be shared with the coaching team and no other participants. You cannot

share anything about this project with other developers if they are not your project partner.

7 DELIVERABLES

The deliverables include 21 score allocated individually and 29 score allocated in teams.

Deliverables are assessed holistically – we are interested in how you meet and exceed the

expectations, the overall quality of your code and app, design, GUI, and coding practices you

adopted, the process, and your entire experience. Meeting the expectations does not guarantee

https://material.io/guidelines/

7

you full score – it is the quality of which the expectations are met. Securing full score requires you

to exceed expectations.

The deliverables for this competition are:

7.1 Design Doc (15 Individual Score)

The design doc includes the following sections:

1. Introduction to the system that includes the context of your app

2. System Modelling: Design a high level “use case diagram” to explain the primary

functionalities of the software. Ensure that all relationships are identified correctly, and

the diagram sounds both semantically and grammatically. Supplying association

multiplicities for your use case diagram is optional. Furthermore, briefly explain the use

cases in your report.

3. System Design: Provide a high-level class diagram for your app properly showing all

intended classes including the Activity classes, ensuring associations and their types and

cardinality (one-to-one, one-to-many, etc.) are correct, and classes include all their

fields/attributes, properties, and methods with their access type that you can identify at

this early stage of development. For simplicity, we recommend that you consider any class

dependencies, if any, (for example, when one class object uses a field or calls a method of

another class object, or when an object is used in another class as a method input or

output argument, etc.) as a simple association between two classes. The cardinality of all

associations, aggregations, and composition relationships needs to be presented, but not

for dependency relationships in case you decide to use them. Ensure SOLID principles

are considered properly.

4. Design Analysis: This section is composed of the following sub-sections:

a. Explain what design smell(s) you identified in your initial attempts of the class

diagram.

b. For each SOLID principle, explain how it is applied in the class diagram. If a

principle was not considered, explain why and justify.

c. How the smell(s) identified in 4.a are removed or improved, or even got worse in the

class diagram.

d. Analyse, compare, and explain your design with respect to maintainability,

reusability, coupling, and coherency. Your judgment should be objective and based

on metrics: justify your judgment by properly measuring software metrics and argue

software quality attributes.

5. GUI Mockups: the UI mocks for each activity and the entire app. The UI mocks should

include colours, typographies, photos, other visual design elements, etc. That means the

mocks should provide visual details as you intend to implement them. Supplying

wireframes similar to the ones provided in this document does not have any score,

6. The data schemes (the collections and documents in Firestore, or in RDBMS terms, the

database and tables),

7. Project Schedule (moving forward) that includes:

e. Role of each software engineer moving forward with the development of the app

f. Gantt chart (with breakdown responsibilities for each member)

This document needs to be compiled by all team members; however, each developer will receive

individual scores based on roles and responsibilities mentioned in the table below. It is

8

mandatory for the teams to follow this table precisely – the task allocations are designed based

on the estimated effort required for each section, and to ensure fairness and equal work

distribution among team members. Please compile all sections in one document, and one of the

developers to submit the complete report for this deliverable on behalf of the team. Please note

that handwritten diagrams and/or photos of handwritten drawings are not acceptable; it is your

responsibility to ensure every figure and information supplied is easily readable. Kindly ensure

that you mention in your report the name of the developers who completed the individual

sections per table below:

Section Developer 1 Developer 2 Developer 3

1. Introduction x

2. System Modelling x

3. System Design x

 4.a Initial Design smells x

4.b: SOLID principles x

4.c: Software Design Smell Analysis x

4.d: Metrics and quality attributes x

5. GUI Mocks x

6. Data schemes x

7.a Role of each software engineer x

7.b: Gantt chart x

Some tips for the design docs:

1. Every use case that you supply in your use case diagram must be implemented in the app.

You need to ensure that you conduct enough research and feasibility study so that the

proposed use cases will be realized.

2. The class diagram that you design at this stage is a "conceptual class diagram", that means

it is not the final class diagram and it is likely that you change it during implementation

once you have more technical knowledge about your project. These changes are

acceptable and expected, but you need to explain them at the end of the project.

3. A class diagram does not necessary contain all types of associations, i.e., you do not have

to use all four types of class relationships. For example, your class diagram for this project

may not have any composition/aggregation association.

4. The class diagram of this project is more complex than its use case diagram since you

already are familiar with OOP and classes but use cases might be new to you that imply a

steeper learning curve. The increased complexity of the class diagram is to compensate for

the additional learning required for use case diagrams.

5. Ensure your use case diagram, class diagram, design mocks, etc. are consistent - they all

present the same product after all.

6. While each developer has responsibilities for specific sections indicated in the table, all

team members need to collaborate with each other and coordinate to ensure the

consistency of this document, your designs, and your product, and that everyone is aware

of the sections complied by other members. You should not complete your sections in

isolation. We recommend that you all work together as a team, but each team member

take responsibility and lead the discussions of your own sections according to the table

presented above.

7. The roles and responsibilities mentioned in the above table only applies to the Design

9

Doc and teams can decide among themselves on the members’ roles for the remaining of

the project.

7.2 Project Demo (15 Score – individual and team components)

All team must be ready to demo their app by Monday of Week 6, but submission of the

source code can be towards the end of Week 6.

Here, you are required to present and demo your app in ten minutes slots (2-3 min each

developer, eight minutes overall, plus 2 min for Q&A and handover), and you may need to

answer some technical questions. You also need to show 1) the implementation of the project is

consistent with your project schedule and roles and responsibilities supplied in your Design Doc,

and 2) in case of any inconsistencies, explain why your initial design/plan had to be changed. A

30% penalty applies to developers who do not supply this information. You need to prepare a set

of slides and present them alongside your app. The slides are to be submitted on Canvas.

Please ensure that your BYOD is ready for demo as your time starts on schedule, and you have

proper adaptors if your BYOD doesn’t have any standard HDMI port. For app demo, please use

the emulator in Android Studio as the demo location may not have document cameras.

The project demos will happen across Week 6’s both lecture sessions in front of the judges and

other participants. Additionally, extra demo sessions are scheduled. The demo schedules are

provided in the table below:

Demo
Session Date and Time Location Attendance Note

1 Tuesday August
22nd 1-3pm

Clock Tower -
South, Room

039

Attendance is
mandatory for all

students
Mandatory peer-review

2
Wednesday
August 23th

10am-12pm pm

B206-203
(Humanities

Building)

All teams can
attend

All developers presenting or
observing to be in the venue before

the first presentation to avoid
disturbing the presenting teams

3
Wednesday

August 23st, 1-
2pm

Clock Tower -
South, Room

039

Attendance is
mandatory for all

students
Mandatory peer-review

4 Thursday August
24th 10am-2pm

B423-340
(Conference

Centre)

Only presenting
developers

All developers presenting to be in
the lab 15 minutes before their

schedules
All teams must book their demo via Demo Booking Sheet by the end of week 4. A 20% penalty

applies to teams without any booking. Please fill the mandatory sessions first. Do not add new

slots.

During your app demo please ensure that you demonstrate the followings (App Demo Criteria –

same for all developers). You need to ensure that your demo provides all the requested

information. Any missing information will impose penalties.

https://uoa-my.sharepoint.com/:x:/g/personal/ssha631_uoa_auckland_ac_nz/EYa-VAZY8BxDrEXUsE9D3b8Bwnv2kKe05vx_C0YpttgRvw?e=gc9IpH

10

The requested UX is implemented as explained in this document. This includes the followings:
MainActivity:
• At least three categories of items are provided
• Tapping on each category properly opens ListActivity and passes over information about the

selected category
ListActivity:
• At least ten items per each category is presented in ListActivity
• Tapping on each item properly opens up DetailsActivity and passes over the information of the

selected item
DetailsActivity:
• All detailed information about the selected item is shown
Search Functionalities:
• Clicking each item properly opens up DetailsActivity and passes over the information of the

selected item
The UI is resize-responsive
The UI design is professional and appealing
Animations and Transitions are properly used
App is functional and does not break down
Roles and responsibilities are explained
Consistency with the Design Doc (planned schedule, SOLID principles and design smells, any
diversion from the plan, etc.)
Length of presentation properly fits the assigned time frame

Additionally, your individual presentation performance based on the criteria below will be

considered to identify your individual score. Each developer needs to equally present and ensure

the presentation enables us to assess the presenter properly:

Speaker maintains good eye contact with the audience and is appropriately animated (e.g., gestures,
moving around, etc.), and is properly dressed.
Speaker uses a clear, audible voice.
Information was well communicated, complete, and good language skills and pronunciation are used.

One of the developers to submit the demo slides on Canvas.

Judging and Peer-Review: You are required to judge all app demos during the official (mandatory)

lecture time, and complete Demo Peer-Review Form for each team separately (one form for all

developers of a team). The form must be completed immediately after each demo is done and

submissions outside the lecture time will be deleted. Your UoA UID and timestamp are captured

when you submit the form so, please ensure that you logged in using your uid@aucklanduni.ac.nz

Google account. We are expecting 13-14 submissions per each developer. Lack of participation in

judging your peers results in 30% penalty.

Presenters, please ensure that you show your team number and your names clearly at the

beginning and end of your demo slides.

7.3 Project Code and Quality Report (20 Score)

You need to submit the code for inspection. Additionally, each team to prepare a short report

explaining the final realization of SOLID principles and any other good coding practices the team

applied.

We will consider the following criteria in addition to our holistic evaluation mentioned before to

compile the score for this deliverable:

https://forms.gle/aRoU64UUv5xtYPkW6
mailto:uid@aucklanduni.ac.nz

11

MainActivity
The “Top Picks” (or similar) panel in MainActivity is populated via a RecyclerView and gets updated as
the app is being used. Selecting an item shows its details via DetailsActivity.
ListActivity
The data items are populated via a ListView or RecyclerView
One adaptor is used for listing all categories’ items
DetailsActivity
This activity enables the user to navigate through at least three images of the selected item.
Search Functionalities
Searching functionality is invoked by a search request from MainActivity and shows the results of the
search term. All possible exceptions were captures and handled properly.
If no item is found, a proper message should be shown instead.
Misc.
Proper usage of ViewHolders in activities, adaptors, etc.
All app data is supplied via Firestore.
Proper inheritance structure for the model classes implemented.
Quality Report
SOLID principles are properly applied and realized (both structurally and within the classes) as
proposed in the Design Doc, and any inconsistencies are properly explained.
Other indication of good coding practices such as consistent naming convention, commenting, proper
usage of packages, etc.

We will also check for the overall code and UI quality, UX, proper usage of software principles

and practices, etc. Poor quality of your code or the app will affect the assessment of other project

deliverables as well.

This deliverable is submitted as a team. One of the developers to compress the code and report

into one file and submit it on behalf of the team.

8 TESTING

You are required to properly test and debug your app to ensure it runs without a fault and

produces the required results. Applications that crash during our assessment or do not run will

lose a considerable amount of score. However, this penalty does not apply during your demo as

you may not demo your final product and still have the opportunity to fix the bugs before you

submit the final code.

9 PROJECT CODE SUBMISSION

Please compress your completed code and report into a zip file or download the source code

(zip) on the release page (with se306-202X-Java-groupID-submission as the file name) and upload

to Project 1 code release in the ‘Assignments’ section on Canvas. Please ensure the zip file

contains all project files and folders and the report.

10 RESOURCES

1. For the images and icons, you can design them yourself or download them from the

internet (providing adequate licensing is provided).

2. For Information about Android animations and transitions please refer to

developer.android.com, androiddesignpatterns.com, and this YouTube video. You can

also inspire by studying the Material Design Guidelines and browsing the Learn Māori

app.

3. For information about how to use RecyclerView refer to developer.android.com and

https://developer.android.com/training/animation/index.html
http://www.androiddesignpatterns.com/2014/12/activity-fragment-transitions-in-android-lollipop-part1.html
https://www.youtube.com/watch?v=K3yMV5am-Xo
https://play.google.com/store/apps/details?id=com.rezanet.learnmaori
https://developer.android.com/guide/topics/ui/layout/recyclerview

12

guides.codepath.com. We have also developed a RecyclerView Demo App to show you

how to use RecyclerView in the context of this project.

4. In case you need to refresh your memory with the requested UML diagrams, you can refer

to your previous courses or online materials, or the following lessons: Use Case Diagram,

Class Diagram

11 PROJECT SCHEDULE

The project schedule is provided below. The due dates are supplied on Canvas.

 To Do Deliverables
Week 1 Team formations finalized by Friday
Week 2 Git repos finalized by Friday with all developers

joined

Week 3 Design Doc
Week 4 All teams to book their demo
Week 5
Week 6 Demo Project Code and Quality Report

12 LINKS

Android Animations and Transitions:
• developer.android.com
• androiddesignpatterns.com
• YouTube video
• Learn Māori
Class Diagram
Demo Booking Sheet
Demo Peer-Review Form
GitHub Classroom Assessment Link

Material Design Guidelines
RecyclerView:
• developer.android.com
• guides.codepath.com
• RecyclerView Demo App
Sample 1
Sample 2
Sample 3
Trello
Use Case Diagram
Wireframe

13 FEEDBACK

Please submit your feedback via email to reza.shahamiri@auckland.ac.nz

14 FAQS

1. Can I use a different a programming language?

No, you can’t. All projects must use Java and native Android platform. Any team using other

programming languages or platforms will be disqualified for this competition and receive a

https://guides.codepath.com/android/using-the-recyclerview
https://github.com/university-of-auckland-cs-302/COMSYS302Exercises/tree/master/Android/RecyclerViewDemo
https://uoa-my.sharepoint.com/:p:/g/personal/ssha631_uoa_auckland_ac_nz/EWt8SXr3w2ZNl_2e1dzHQ90B7JLYvd5DFz1bXgtkdxdVCQ?e=fv6Zzf
https://uoa-my.sharepoint.com/:p:/g/personal/ssha631_uoa_auckland_ac_nz/EVSeZY5Cv5pMkqENgBUvpjcBrpI0IRS0f7xl-ZaB-SLD7A?e=XJMJHq
https://developer.android.com/training/animation/index.html
http://www.androiddesignpatterns.com/2014/12/activity-fragment-transitions-in-android-lollipop-part1.html
https://www.youtube.com/watch?v=K3yMV5am-Xo
https://play.google.com/store/apps/details?id=com.rezanet.learnmaori
https://uoa-my.sharepoint.com/:p:/g/personal/ssha631_uoa_auckland_ac_nz/EVSeZY5Cv5pMkqENgBUvpjcBrpI0IRS0f7xl-ZaB-SLD7A?e=XJMJHq
https://uoa-my.sharepoint.com/:x:/g/personal/ssha631_uoa_auckland_ac_nz/EYa-VAZY8BxDrEXUsE9D3b8Bwnv2kKe05vx_C0YpttgRvw?e=gc9IpH
https://forms.gle/aRoU64UUv5xtYPkW6
https://classroom.github.com/a/Yh8TWrT2
https://material.io/guidelines/
https://developer.android.com/guide/topics/ui/layout/recyclerview
https://guides.codepath.com/android/using-the-recyclerview
https://github.com/university-of-auckland-cs-302/COMSYS302Exercises/tree/master/Android/RecyclerViewDemo
https://youtu.be/VRXd34YHEXM
https://uoa-my.sharepoint.com/:v:/g/personal/ssha631_uoa_auckland_ac_nz/EakYbaCCSXROt-Tsq9t2HJQBwa5lwqX4MsSyXhLQ4xYrFg?e=5Lp4H1
https://youtu.be/a_OxFXqDIiQ
https://trello.com/
https://uoa-my.sharepoint.com/:p:/g/personal/ssha631_uoa_auckland_ac_nz/EWt8SXr3w2ZNl_2e1dzHQ90B7JLYvd5DFz1bXgtkdxdVCQ?e=fv6Zzf
https://xd.adobe.com/view/972b0ab8-d288-4de1-6b66-fa4006ee51a3-e11a/?fullscreen

13

zero score.

2. What tools can we use to design the diagrams?

You are free to use any tool you prefer. Some recommendations are below:

• UML Use Case Diagrams - Lucidchart

• What is a Use Case Diagram - Visual Paradigm

• UML Use Case Diagram - Java At Point

• UML Class Diagram Tutorial - Visual Paradigm

• UML Class Diagrams - Java At Point

• UML Class Diagrams - Lucidchart

• Regarding GUI design mocks, you can use Figma, inside which you can create a

Prototype’: an interactive wireframe that simulates how it will flow on the app. There is

also a plugin for Material Design icons.

3. How detailed should the use case diagram be?

You only provide the major use cases in a high-level diagram. You need to decide what major

use cases in your app are and add them to this diagram. Ask yourselves what the primary

functions of your app from each actor’s point of view are, then these main functionalities

become your use cases, plus other use cases that you may need to service the main use cases.

4. We are wondering what should be considered a use case in the use case diagram. For

example, assume a case study in which the user is prompted to enter information (student ID,

course ID etc) - is that a use case? What about when the system parses the user's input and

tells them if it was invalid?

Use cases capture the primary functionalities of the system. The level of detail you provide is

with respect to the complexity and the context of the system. There also multiple levels of use

case diagrams in which detailed use case diagrams can capture more detailed operations of the

system, as actors see them. Here you only need to provide the high-level use case diagram. You

need to act as actors to decide what functionalities are major and important.

5. WRT the class diagram, assume “Method A of Class1 creates and returns an instance of

Class2”, and “Method B of Class1 uses this instance of Class2 as a parameter”. Should we just

have one association here between Class1 and Class2?

Yes, either there's one usage of an object or many, you only use one association to show that.

6. Should we show cardinalities for all association types?

Instead of inheritance (and dependencies if used), cardinalities for other associations are

needed.

7. If a class accesses a static method of another class, what are the cardinalities of this

relationship?

We do not create an object of a class if we only use static methods of the class. Cardinality is

usually identified as how many instances of Class1 associate with how many instances of

Class2, and vice versa. If the association between two classes only limits to static methods, it

makes sense to consider it as a one-to-X relationship. Otherwise, the cardinality clause above

applies.

8. Should we add multiplicities to our dependencies?

This is a recommendation that you don't consider dependency for this project - to simplify it,

https://www.lucidchart.com/pages/uml-use-case-diagram#:~:text=a%20UML%20Diagram-,What%20is%20a%20use%20case%20diagram%3F,of%20specialized%20symbols%20and%20connectors
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/
https://www.javatpoint.com/uml-use-case-diagram
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.javatpoint.com/uml-class-diagram
https://www.lucidchart.com/pages/uml-class-diagram
https://www.figma.com/

14

but you still need to capture them in your class diagram. That is, when there's a relationship

between two classes, you first decide whether it's inheritance, composition, or aggregation. If

the relationship doesn't fall into any of these, then you consider it as a simple association,

that makes your task easier rather than arguing whether it's a dependency or simple

association. If you're adopting this approach, then yes, you need to supply the cardinality of

all associations/compositions/aggregations but not for generalizations. However, it's up to

you whether you'd still like to use dependencies.

9. If two classes are associated with a strong relationship (e.g. association, aggregation,

composition), can we omit a dependency relationship between those two classes?

You are required to do so in this project. It's either dependency OR other associations but

not both. The preference is to use associations.

10. What metrics should we calculate?

It depends on how you decide to formulate your arguments. As long as your arguments are

valid and the metrics you select to measure indicate them, we will accept. Having said that, a

collection of object-oriented metrics that clearly rationalize your argument wrt the requested

quality attributes is recommended.

11. Do we calculate CBO for classes with only static functions?

Yes, static-only associations are also counted.

12. Are constructors one of the methods included in the WMCFan-In calculation?

Yes, they are.

13. When calculating Fan-in, should methods that invoke other methods in the same class be

counted? For example, if MethodA and MethodB are in the same class and MethodA invokes

MethodB, would that be counted when calculating the Fan-in for MethodB?

Yes, both internal and external calls are to be considered.

14. Do I need to add functionalities to sell items?

This is not needed to meet the expectations. For simplicity, this app only showcases items.

However, you can simulate selling functionalities or other extra features if you intend to

exceed expectations.

15. Should we keep our GitHub repo updated with the final version of the code?

Yes, your repo and the code you submit on Canvas must be identical.

16. What if we make changes to the version of the app we demo and the final code submitted on

Canvas?

It is fine that your demoed app and final submission to be slightly different as you may use

the feedback received during the demo and last week of the competition to polish your app,

especially for teams that present on the first days of demo.

17. Do we need to supply all information about each item in the DetailsActivity?

It is recommended that you provide all data for each of your model objects. However, the

data can be mock data if you cannot find real information. You need to ensure that your

DetailsActivity is realistic and supply proper information.

18. How should I select the Top Pick items in MainActivity?

This is completely up to you. You can define different criterion such as number of views,

popularity, or any other criterion you prefer. This criterion can be initialized in the dataset or

15

any other mechanisms you prefer. Please be advised that this panel is expected to show some

items even in the first app run.

19. Do we need to add all folders of the project to our repo?

Yes, we need all android project files and folders on your repo and also submitted on Canvas

to properly run your project. If you have other files and folders that may be needed such as

any documentation, please add them to your repo to.

20. Do you use any special emulator to test our apps?

Your app should be resize-responsive. However, we exclude uncommon devices such as very

small screen or very large screen devices. Ensure your app shows up properly on devices with

screen sizes of 5-7 inch.

21. Should we design our app for landscape mode too?

Your app is resize responsive, it should work on both portrait and landscape mode. You

generally design the layout for portrait mode, but test it is properly shown on landscape mode

as well. If an activity should not be shown in landscape mode, you need to lock that activity to

portrait mode.

22. Should we use an automatic image slider or is it essential to have one which the user can

navigate through on DetaislActivity?

As the designer of the app it is your decision to have the images automatically slide, or the

user be able to navigate them manually. However, automatic sliders are more popular on the

landing page of apps or websites while it is preferred for users to be able to navigate manually

when they see item details.

23. Can we output a toast if a search is invalid, or does it have to be a message on the ListActivity

interface?

For unsuccessful search enquires, users are generally informed via a persistent method. For

other exceptions, it is your decision to select the way in which you inform your users, as long

as your approach is generally acceptable to users and consistent with other frequently used

apps.

24. This document suggests we use a RecyclerView for the top picks section; is it okay to use a

ListView and adapter since it performs about the same as a RecyclerView?

Using a RecyclerView is a requirement for the Top Picks panel of MainActivity since

ListViews do not provide horizontal scrolling of list items. For other places, it is up to the

team whether to use ListView or RecyclerView.

25. Can we use fragments instead of activities?

Yes, you can replace activities with fragments when necessary, for example, if you use the

Bottom Navigation Activity template.

26. In our application it makes almost no sense to have multiple types of list activity, and I believe

doing so would add confusion to the user. That being said the project document states that

the ListAcitivty between categories has the be "different". Could we please get some

clarification on how "different" we are required to make our ListActivity?

What you need to do here is to slightly modify the items you show in the

ListView/RecyclerView of ListActivity. The ListActivity and its adaptor is an easy opportunity

to show SOLID and dependency injection are applied; otherwise, you need to find other ways

to prove their applications in your project.

16

You can ask yourselves if there are different data attributes that can be considered for

different category items, slightly different design for the ListView items for each category like

a different background shade, relocation of views, etc. Be creative here.

Make sure that you properly watch Android Lesson 14 lecture to see how we addressed this

requirement in the Learn Māori app.

27. Can we use a glide dependency to get images from the internet?

Yes, this is acceptable.

28. It seems pretty difficult to find multiple photos of the same item through officially licensed

methods. Is it possible for us to gather images manually from another website (Amazon,

AliExpress etc.) and then mention the source somewhere in the app or final project

documentation?

Most of the times using resources for educational reasons is fine so if you are not publishing

your app, it should be ok. However, if publishing your app you need to check for the

copyrights. You can also take your phone and capture the images if that's possible.

29. I missed a due date. Do any penalties apply?

Unless you have a reasonable and acceptable reason for missing due dates, yes, penalties will

apply. This applies to all deliverable due dates and other due dates such as team formations,

git repo setups, etc. Being able to deliver on time and follow instructions are among the

criteria that we consider in our holistic assessment approach as both product’s features and

quality, and the process in which you follow will be assessed.

30. Can I change my partner?

Changing partners after teams are setup creates a ripple effect. As such, changes in teams are

not possible after teams are setup on Canvas. It is important that you develop skills to work

with others who you do not know closely since you usually do not get to select your partner in

a real professional environment. Your team working skills will be assessed in this competition.

31. Do we have to follow the same structure as the design doc for the quality report?

No, while the Design Doc has a specific structure, your Quality Report is flexible. You have

complete flexibility to deliver your narrative addressing the requirements set out for the

Quality Report. Use any structure you feel best.

32. Can I use generative AI, such as ChatGPT, in this project?

It is important that your work is original and you can explain it completely. You can use tools

to help you complete the project better. However, if you are using code or other materials you

did not produce, you must disclose them and explain from where and to what extent you

have used them in your project. You are still required to be able to explain any material you

submitted, even if inspired from tools or other individuals, and prove you understand the

project and course materials well. Failure to explain your submissions and demonstrate

sufficient technical understating or disclose the use of generative AI or other tools and

sources that helped you in your project may be considered plagiarism.

	1 Assessment Conditions
	2 Project Management Tool
	3 GitHub Classroom
	4 The App Specifications
	4.1 Activity 1: MainActivity
	4.2 Activity 2: ListActivity
	4.3 Activity 3: DetailsActivity
	4.4 Search Functionalities (or SearchActivity)
	4.5 Database
	4.6 App Design and Wireframe

	5 Your Tasks
	6 GitHub Usage Policy
	7 Deliverables
	7.1 Design Doc (15 Individual Score)
	7.2 Project Demo (15 Score – individual and team components)
	7.3 Project Code and Quality Report (20 Score)

	8 Testing
	9 Project Code Submission
	10 Resources
	11 Project Schedule
	12 Links
	13 Feedback
	14 FAQs

