
Project: Using AI and parallel processing power to
solve difficult scheduling problem

A/Prof Oliver Sinnen

2023
Version 1.0.2

1 Introduction
This project is about using artificial intelligence and parallel processing power to solve a difficult
scheduling problem. It is about Speed! In this project of the SoftEng306 design course your client
is the leader of a Big-As Parallel Computing Centre, who needs you to solve a difficult scheduling
problem for his parallel computer systems. This client happens to be Oliver Sinnen. The project is
well defined and scoped, but the particular challenge of this project are the (possibly) contradicting
objectives: developing a solution with a Software Engineering approach and design, while having a
very fast execution speed. At the end of the project your solutions will compete against each other
in a speed comparison. Your team might choose to contribute the solution to the PARC lab for their
work.

2 The problem
Some years ago, processor technology started to reach physical limitations. Since then, more and more
computing systems have become parallel, i.e. use more than one processor, because this is the only way
to further increase performance. As a consequence, parallel computing became omnipresent, where
even smartwatches possess more than one processor (core) and supercomputers use millions.

To efficiently use more than one processor, a software program must be written correspondingly.
The program must be divided or split into multiple tasks and they must be executed by the different
processors. A crucial problem for the efficiency of executing such a parallel program is how tasks are
mapped to the available processors and in which order they are executed.

This so called scheduling problem is very difficult, not only in practise, but even in theory. In order
to study this problem and to find good solutions, it has been formalized. A program is described by
a task graph, where the nodes of the graph represent tasks and the edges represent data transfer or
dependences between the tasks. The data transfers (or communications) are directed and there must
not be any cycle (otherwise there would be a dependence cycle), which makes the graph a directed
acyclic graph (DAG). Our scheduling problem now becomes the assignment of the nodes (tasks) of the
graph to a given set of p processors (corresponding to the processor number of the system where we
want to execute our program). We also need to define the order in which the tasks are executed on
the processors. The objective is to do the mapping and ordering of the tasks in such a way that the
total execution time of the program is minimized.

1

In its general form, this scheduling problem belongs to the class of so called NP-hard problems.
All NP-hard problems share the property that no efficient algorithm has been found to optimally solve
them. Efficient means here that all the known algorithms that can optimally solve these problems
have a runtime complexity that grows exponentially (!) with the size of the problem. In our case that
means that the runtime grows with the number n of tasks, i.e. it is O(cn), where c is a constant. Many
practically relevant problems belong to the class of NP-hard problems, e.g. the Traveling Salesperson
Problem, aircraft crew scheduling, optimal routing in electronic circuits, university timetabling (!),
project allocation to students (part 4 project selection (!)), map colouring, bin packing problem,
Boolean satisfiability problem (SAT), berth allocation problem, dependence analysis in compilers,
integer linear programming, ...

So normally heuristic algorithms with short runtimes are used for these problems, which deliver
often good, but not optimal solutions. This is mostly good enough in practise, but sometimes it is
desirable to have an optimal solution nevertheless. For example for a critical system or to verify the
quality of the solutions found by heuristics. The only option is then to “brute force” the problem, by
simply trying out all possible solutions and to see which one is best. Of course, this only works for
small to mid-sized problems, after all the runtime will grow exponentially (but we might be able to do
something about the constant c).

Our above described scheduling problem is a combinatorial optimisation problem. This means there
is a finite number of possible solutions, even though this number can be extremely large. Every task
can be allocated to every processor, i.e. there are pn possible different allocations, and we can execute
the tasks in any possible order, i.e. there are O(n!) possible permutations (there are not exactly n!
permutations, as edges in the graph prohibit some permutations). This results in a total complexity
of O(pnn!) and will be an extremely large number of possibilities even for very tiny values of n. So we
need to be smart about the way we try out solutions and to avoid all solutions that cannot be optimal.

These kind of combinatorial optimization problems are often tackled with algorithms from Artificial
Intelligence, in particular branch-and-bound algorithms. In that approach, all possible solutions are
explored in the structure of a tree. We build new solutions by modifying one aspect of the current
solution and this naturally leads to a tree structure spawning all solutions. To find the optimal solution
we need to search the tree. Two prominent branch-and-bound algorithms to do this are called depth-
first search branch-and-bound and A*.

3 Project
Your assignment is to develop a branch-and-bound type algorithm that solves the above described
scheduling problem optimally for small input graphs. To achieve the highest possible performance,
you also need to parallelise this branch-and-bound algorithm so that it itself uses multiple processors
to speed up the search.

3.1 Scheduling problem
The input is the directed acyclic task graph G = (V,E,w, c), where V is the set of tasks and E is the
set of edges between the tasks. A weight w(n), n ∈ V , associated with task n represents its execution
time and weight c(eij), eij ∈ E, represent the time the data transfer (communication) between task
ni and task nj takes if the two tasks are executed on different processors. If they are executed on the
same processor, it is assumed that the data transfer time is negligible and set to 0. Figure 1 shows a
simple example task graph with four tasks.

In a schedule of the graph G, we denote the start time of a task with ts(n). At any point in time
only one task is active on every processor and it cannot be interrupted. It follows that if two tasks ni

and nj are executed on the same processor, i.e. proc(ni) = proc(nj) then either ts(nj) ≥ ts(ni)+w(ni)
or ts(ni) ≥ ts(nj) + w(nj), i.e. one task must completely finish before the next task starts. Edges
impose another restriction on the start time of tasks. For each edge eij ∈ E it must be true that

2

Figure 1: Task graph example

Figure 2: Schedule of example DAG (Fig. 1) on 2 processors

ts(nj) ≥ ts(ni) + w(ni) + c(eij), if the tasks are executed on different processors, otherwise just
ts(nj) ≥ ts(ni) + w(ni). Figure 2 depicts a schedule of the example task graph of Figure 1 on two
processors. Observe that task c on processor P2 can only start at time unit 4 due to the incoming edge
from task a with a communication delay of w(eac) = 2.

The objective of the scheduling problem is to minimize the schedule length (also called makespan),
which is the finish time of the last task: sl = maxn∈V {ts(n) + w(n)} (assuming the first tasks starts
at time 0).

3.2 Branch-and-bound
Exhaustive search algorithms, like branch-and-bound, consider all possible solutions to an optimization
problem. This is done in a tree structure, where every node (also called state) of the tree represents
a (partial) solution to the problem. For example, in a problem to find the shortest route on a map,
a tree node represents a part of the route, e.g. three stages of a route. A leaf node of the tree is the
complete route to the destination. A partial solution (node) is expanded by adding one more stage,
thereby creating the children of the node. There is one child for each possible choice. In the routing
example this means to add the next town to the current route, where every town choice is a different
child node. To accelerate the search, we estimate the cost of a node. In the route example, this is the
distance already traveled plus the direct line to the destination. If this is larger than an already known
route, we can stop to further expand the node, i.e. we bound the search. Like this we can exclude
entire subtrees from the search.

In our scheduling problem, even though we assign start times to tasks, it is sufficient to find the
allocation of tasks to processors and the ordering of the tasks on the processors. We then simply
calculate the start time as the earliest possible time given the availability of the processor and the
arrival time of incoming communications. Hence, we can think of a node in the search tree as a partial

3

Figure 3: Example solution tree for scheduling graph on 2 processors

schedule, where some tasks have already been assigned to processors and/or ordered for execution. A
partial schedule is expanded by taking one more scheduling decision, in terms of allocation or ordering
or both. Figure 3 shows a possible solution tree for the scheduling of a task graph on two processors,
where a child is created by scheduling one more task on a chosen processor.

There are several alternatives to search through such a solution tree. A very common method is to
use depth-first search branch-and-bound. Here we start at the root of the tree and go straight down to
create a complete solution. Then the algorithms backtracks (going one level up in the tree), modifying
one decision and creating a new complete solution. This method uses limited memory and creates a
good valid solution quickly, but the entire tree needs to be searched before one can be certain that
the optimal solution has been found. Of course, bounding is used to safely exclude as many parts of
the search tree as possible. An alternative, which has the potential to be faster, is a best-first search
called A*. Here, we also start at the root node, but we use a priority queue to pick the next node
to expand. The order in the queue is determined how promising the nodes are in order to obtain
the optimal solution. In our case, the highest priority is given to the node with the lowest estimated
schedule length (based on the partial schedule represented by the node and an under-estimate of the
execution of the remaining tasks).

Both approaches, DFS branch-and-bound or A* can be used to search for the best schedule. De-
veloping good bounding and estimation function will be essential to achieve good performance.

3.3 Parallelization of search
Even when using smart search techniques as described in the previous section, the search space even
for small problem instances is very large and searching it can take very long. It seems very meaningful
to use more than one processor in parallel to search for the optimal solution.

Hence, after developing a functional sequential implementation of the search, a parallel version
needs to be developed. This is to be done as a solution for a single system with multiple processors
(cores) and shared memory (as opposed to a distributed solution involving multiple systems connected
in a network). All current multicore systems belong to this category, including the PCs in the labs. Es-
sentially this implies the development of a multithreaded implementation of the search that accelerates
it in comparison to the sequential version.

3.4 Visualization of search
Using an exhaustive search method can take long, even for small graphs and when done in parallel.
Hence, in the spirit of good software engineering, the user needs to be provided with a live visual
feedback about the search. There are different things that can be visualised, e.g. a Gantt chart of
the current partial schedule that is examined, statistical values about the search or the areas of the

4

complete search tree that have been visited. The visualisation needs to live update with the search in
progress and can have interactive elements, such as zoom or focus on certain aspects. The presented
information should be meaningful and a reflection of the search, not just showing a progress bar or
similar. The exact visualisation is open-ended and is up to the project team to design and implement.

4 Implementation technologies
Programming language and libraries, memory The project is to be implemented in Java
(compatible with Java 17). External libraries (not part of Java SDK) can be used (given proper
license), but they need to be clearly separated from own work. The Java virtual machine will be given
a maximum heap size of 4GB (-Xmx4G).

OS The targeted OS is Linux (solution must run under Linux), but given that it will be a Java
project, the project should also work under Windows. Should you not develop on Linux, pay particular
attention to file path handling and avoid any hard-coding.

Input The input to the program will be a graph and the number of processors on which to schedule
the graph as command line parameters. The graph is given in dot format (file name ending with
.dot). Here is an example of the simple graph from Figure 1 in dot format. This is an just an example,
assume possible (reasonable) variations, e.g. node names can be any strings, no particular order can be
assumed. Weights are integers. A dot file might include other (dot) syntax, which should be gracefully
ignored.
digraph "example" {

a [Weight =2] ;
b [Weight =3] ;
a −> b [Weight =1] ;
c [Weight =3] ;
a −> c [Weight =2] ;
d [Weight =2] ;
b −> d [Weight =2] ;
c −> d [Weight =1] ;

}

Output The output is a file in dot format (with .dot ending), which is essentially a copy of the input
with two added attributes to each task: start time and allocated processor. For example the schedule
in Figure 2 is given in dot format as:
digraph "outputExample" {

a [Weight=2, Star t =0, Proces sor =1] ;
b [Weight=3, Star t =2, Proces sor =1] ;
a −> b [Weight =1] ;
c [Weight=3, Star t =4, Proces sor =2] ;
a −> c [Weight =2] ;
d [Weight=2, Star t =7, Proces sor =2] ;
b −> d [Weight =2] ;
c −> d [Weight =1] ;

}

The output does not need to preserve the input order.

Interface Each milestone of the project needs to be packed in a jar package so that it can be invoked
from the command line with the following parameters.
java −j a r s chedu l e r . j a r INPUT. dot P [OPTION]
INPUT. dot a task graph with i n t e g e r weights in dot format
P number o f p r o c e s s o r s to schedu le the INPUT graph on

Optional :
−p N use N co r e s f o r execut ion in p a r a l l e l (d e f au l t i s s e qu en t i a l)
−v v i s u a l i s e the search
−o OUPUT output f i l e i s named OUTPUT (de f au l t i s INPUT−output . dot)

5

Additional arguments can be used to influence the visualisation, to fine-tune or to debug the search,
but the best parameters should be chosen as default.

5 Organization and assessment

5.1 Teams
This project is to be undertaken in 6 weeks by teams of 5 students each (a few groups will have 6
students due to divisibility). Teams are to be self-formed on Canvas under “project 2 team”. The
first groups in the list on canvas allow for 6 members, all other groups only allow for 5 members, so
depending on your team size, select a corresponding group number (first come first served, i.e. if there
is no 6-member team left, you need to form a team with 5 members). No more than two members per
group can be from the same project 1 group.

The work must be divided up among team members as the project progresses, giving each member
a role in programming, and also at least one other role e.g. to work on software installation, planning,
design, testing, wiki and documentation. However do not divide into independent subgroups because
that will lose marks for your team. Share the tasks around so everyone contributes across the whole
project and is aware of the overall project development. We want to see clear evidence that the whole
team is working together.

Also select a name (and optionally logo) for your team (but also include your original team number,
e.g. "5 - dream team").

5.2 Development tools
For version control this project will be using github (classroom). One private project repository
will be created for each team, where all team members have equal access using their own account.
Instructions on how to join the team repositories will be sent out once the teams have been finalised.

Each team member needs to push/commit their work under their own account. If you work in pairs,
take turns committing (and indicate pair coding in the commits messages). All work on the project
needs to be done from the start in the allocated repository. Do not use any other repository for
your work, also not temporarily!

Submit the github URL of the corresponding milestone release in the assignment submission on
Canvas for the milestones. Github is to be used for version control of your code. Use the wiki for
documentation and the issue tracker. Discussion between team members can be done in the discussion
area on canvas.

5.3 Milestones
There are three milestones for the project implementation.

Plan Develop a plan for your project, using a Work Breakdown Structure (WBS), derive a Network
Diagram from the WBS to show dependences between the tasks and put this into a Gantt Chart for
detailed planning.

Milestone 1 For the most basic milestone your implementation needs to be able to:

• Read the input file and number of processors and create an output file

• The output file needs to contain a valid schedule (non-trivial, but does not need to be optimal
at this point)

6

Milestone 2 (Final) The final milestone is the complete implementation. It needs to be able to (in
order of importance),

• Create an optimal schedule for small input graphs in reasonable time (say less than at most 10
minutes)

• Have a parallel version of the search that demonstrates speedup in comparison to the sequential
version

• Have a meaningful and interesting live visualisation of the search

5.4 Assessments and deliverables
Total for this project: 50%. All deliverables are one for the entire team unless stated otherwise.

• Project plan, 5%, due in week 8

– Plan (pdf), including Work Breakdown Structure (WBS), Network Diagram, Gantt Chart
with necessary labeling and explanations

• Milestone 1, 10%, due in week 10

– Implementation on github, 10%, (in master branch, clone-and-compile ready, Release
"Milestone 1" (including scheduler.jar))

• Milestone 2 (Final), 35%, due in week 12

– Interview/demo/implementation, 25%
∗ Implementation on github (in master branch, clone-and-compile ready, Release "Fi-

nal" (including scheduler.jar))
∗ Interviews (showing a working demo of implementation) in week 12

– Report (pdf), 10%: specification in separate document on Canvas
– Confidential peer evaluation form (each student) via TeamMates (not graded, of course,

but requirement to pass)

The milestones will be graded according to various criteria. These are functionality (e.g. validity,
finding optimal schedule), speed (time to find the optimal schedule), high quality of coding standards,
development process, teamwork, comments, documentation and testing. While you work in teams, we
will aim at marking you individually, hence all team members need to be committed and contribute
to the project.

This project has the particular challenge of the contradicting objectives of high software engineering
standards of design and code, and the need to have very fast execution speed.

5.5 Lectures, interviews
Our allocated slots are Tuesday 1pm-3pm and Wednesday 1pm-2pm for lectures and team presenta-
tions.

These slots will be used as follows (subject to change!):
During the first two weeks, you will be introduced to the course, the project will be presented and

project management methods will be briefly reviewed.
Given that the project implementation only relies on a Java development environment, you can

work where ever it suits you best. For your convenience to have a space and to meet, we continue
with the drop-in lab slots: Tuesdays and Thursdays, 401-311 at 4-6pm. Interviews will be conducted
at the beginning of week 12, self-scheduled later on Canvas by each group. Each group interview last
20-30mins.

7

week Mon Tue Wed Thu Fri

7 lecture lecture

8 lecture plan

9 team presentations

10 milestone 1

11 team presentations

12 milestone 2; interviews interviews interviews report

Table 1: Schedule of project

In-class team presentations During the Tuesday lecture of week 9 and 11, teams will be briefly
presenting their progress on the project (4 minutes). All team members need to be present and
participate.

5.6 Speed competition
At the end of the project in week 12 we will hold a speed competition, measuring the performance
of the sequential and parallel versions of the submitted implementation and will determine winners in
each category.

8

